Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JAMA Netw Open ; 6(2): e230982, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2280930

ABSTRACT

Importance: Breath analysis has been explored as a noninvasive means to detect COVID-19. However, the impact of emerging variants of SARS-CoV-2, such as Omicron, on the exhaled breath profile and diagnostic accuracy of breath analysis is unknown. Objective: To evaluate the diagnostic accuracies of breath analysis on detecting patients with COVID-19 when the SARS-CoV-2 Delta and Omicron variants were most prevalent. Design, Setting, and Participants: This diagnostic study included a cohort of patients who had positive and negative test results for COVID-19 using reverse transcriptase polymerase chain reaction between April 2021 and May 2022, which covers the period when the Delta variant was overtaken by Omicron as the major variant. Patients were enrolled through intensive care units and the emergency department at the University of Michigan Health System. Patient breath was analyzed with portable gas chromatography. Main Outcomes and Measures: Different sets of VOC biomarkers were identified that distinguished between COVID-19 (SARS-CoV-2 Delta and Omicron variants) and non-COVID-19 illness. Results: Overall, 205 breath samples from 167 adult patients were analyzed. A total of 77 patients (mean [SD] age, 58.5 [16.1] years; 41 [53.2%] male patients; 13 [16.9%] Black and 59 [76.6%] White patients) had COVID-19, and 91 patients (mean [SD] age, 54.3 [17.1] years; 43 [47.3%] male patients; 11 [12.1%] Black and 76 [83.5%] White patients) had non-COVID-19 illness. Several patients were analyzed over multiple days. Among 94 positive samples, 41 samples were from patients in 2021 infected with the Delta or other variants, and 53 samples were from patients in 2022 infected with the Omicron variant, based on the State of Michigan and US Centers for Disease Control and Prevention surveillance data. Four VOC biomarkers were found to distinguish between COVID-19 (Delta and other 2021 variants) and non-COVID-19 illness with an accuracy of 94.7%. However, accuracy dropped substantially to 82.1% when these biomarkers were applied to the Omicron variant. Four new VOC biomarkers were found to distinguish the Omicron variant and non-COVID-19 illness (accuracy, 90.9%). Breath analysis distinguished Omicron from the earlier variants with an accuracy of 91.5% and COVID-19 (all SARS-CoV-2 variants) vs non-COVID-19 illness with 90.2% accuracy. Conclusions and Relevance: The findings of this diagnostic study suggest that breath analysis has promise for COVID-19 detection. However, similar to rapid antigen testing, the emergence of new variants poses diagnostic challenges. The results of this study warrant additional evaluation on how to overcome these challenges to use breath analysis to improve the diagnosis and care of patients.


Subject(s)
COVID-19 , Volatile Organic Compounds , United States , Adult , Humans , Male , Middle Aged , Female , SARS-CoV-2/genetics , COVID-19/diagnosis , Breath Tests
2.
Front Neurol ; 13: 911332, 2022.
Article in English | MEDLINE | ID: covidwho-2009888

ABSTRACT

Shapiro's syndrome (SS) is characterized by spontaneous periodic hypothermia. It occurs to patients regardless of age or sex. To date, <60 cases have been reported worldwide. Current knowledge of the disease is limited to clinical feature since the pathogenesis and etiology are still controversial. In this review, the clinical characteristics, pathological mechanism, and possible etiology of the syndrome were reviewed to improve the clinical understanding of the disease.

3.
Wireless Networks ; : 1-13, 2022.
Article in English | EuropePMC | ID: covidwho-1877455

ABSTRACT

The market size of the Internet audiovisual industry is expanding continuously, which has profoundly affected the ecology of public opinion and the development of the digital culture industry. During the epidemic of Covid-19, it is witnessed that a surge of active online audiovisual users. However, several issues happening in the Internet audiovisual industry, such as spreading rumors, engaging in vulgar performances, which seriously damaged the network environment and social order. For this reason, a tripartite evolutionary game model of Internet audiovisual space governance was established to simulate and analyze the behavior strategies of administrative departments of radio and television, the Internet audiovisual program service agencies, and network audio and video content creators. Moreover, the game model is verified by empirical analysis. Results demonstrate that: only driven by the administrative department of broadcasting and television can the tripartite evolutionary game of Internet audiovisual space governance reach the expected evolutionary equilibrium point. Therefore, administrative departments of radio and television should give full play to the driving role in the process of Internet audiovisual space governance, strengthen the publicity of regulating the creation of Internet audiovisual content and the warning of vulgar creation through government regulation.

4.
Computers & Electrical Engineering ; : 107582, 2021.
Article in English | ScienceDirect | ID: covidwho-1558615

ABSTRACT

Recently, many noncontact sensors are intended for facilities that require hygiene to be considered. However, there is a problem in that noncontact sensors could malfunction unintentionally. In addition, there is a demerit in that noncontact sensor is not possible to perform complicated operations with one sensor because it would be limited to the simple operation of turning on when hold hand over it. In this paper, we examine the principle of a noncontact sensor that responds only to the action of waving in front of the sensor as an intentional action and does not malfunction. Additionally, since there are large and small hand waving methods, hand waving alone could be used for multiple signals. Experiments show that the proposed system is to realize not only the states of ON and OFF but also various operations with a single noncontact button.

5.
Mol Med Rep ; 24(2)2021 Aug.
Article in English | MEDLINE | ID: covidwho-1271003

ABSTRACT

Coronavirus disease 2019 (COVID­19), caused by the severe acute respiratory syndrome coronavirus­2 (SARS­CoV­2), led to an outbreak of viral pneumonia in December 2019. The present study aimed to investigate the host inflammatory response signature­caused by SARS­CoV­2 in human corneal epithelial cells (HCECs). The expression level of angiotensin­converting enzyme 2 (ACE2) in the human cornea was determined via immunofluorescence. In vitro experiments were performed in HCECs stimulated with the SARS­CoV­2 spike protein. Moreover, the expression levels of ACE2, IL­8, TNF­α, IL­6, gasdermin D (GSDMD) and IL­1ß in HCECs were detected using reverse transcription­quantitative PCR and/or western blotting. It was identified that ACE2 was expressed in normal human corneal epithelium and HCECs cultured in vitro. Furthermore, the expression levels of IL­8, TNF­α and IL­6 in HCECs were decreased following SARS­CoV­2 spike protein stimulation, while the expression levels of GSDMD and IL­1ß were increased. In conclusion, the present results demonstrated that the SARS­CoV­2 spike protein suppressed the host inflammatory response and induced pyroptosis in HCECs. Therefore, blocking the ACE2 receptor in HCECs may reduce the infection rate of COVID­19.


Subject(s)
Epithelium, Corneal/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cells, Cultured , Cornea/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/virology , Epithelium, Corneal/virology , Female , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pyroptosis , Spike Glycoprotein, Coronavirus/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
6.
Environ Pollut ; 279: 116923, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1126822

ABSTRACT

To control the spread of COVID-19, China implemented a series of lockdowns, limiting various offline interactions. This provided an opportunity to study the response of air quality to emissions control. By comparing the characteristics of pollution in the summers of 2019 and 2020, we found a significant decrease in gaseous pollutants in 2020. However, particle pollution in the summer of 2020 was more severe; PM2.5 levels increased from 35.8 to 44.7 µg m-3, and PM10 increased from 51.4 to 69.0 µg m-3 from 2019 to 2020. The higher PM10 was caused by two sandstorm events on May 11 and June 3, 2020, while the higher PM2.5 was the result of enhanced secondary formation processes indicated by the higher sulfate oxidation rate (SOR) and nitrate oxidation rate (NOR) in 2020. Higher SOR and NOR were attributed mainly to higher relative humidity and stronger oxidizing capacity. Analysis of PMx distribution showed that severe haze occurred when particles within Bin2 (size ranging 1-2.5 µm) dominated. SO42-(1/2.5) and SO42-(2.5/10) remained stable under different periods at 0.5 and 0.8, respectively, indicating that SO42- existed mainly in smaller particles. Decreases in NO3-(1/2.5) and increases in NO3-(2.5/10) from clean to polluted conditions, similar to the variations in PMx distribution, suggest that NO3- played a role in the worsening of pollution. O3 concentrations were higher in 2020 (108.6 µg m-3) than in 2019 (96.8 µg m-3). Marked decreases in fresh NO alleviated the titration of O3. Furthermore, the oxidation reaction of NO2 that produces NO3- was dominant over the photochemical reaction of NO2 that produces O3, making NO2 less important for O3 pollution. In comparison, a lower VOC/NOx ratio (less than 10) meant that Beijing is a VOC-limited area; this indicates that in order to alleviate O3 pollution in Beijing, emissions of VOCs should be controlled.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Communicable Disease Control , Environmental Monitoring , Gases , Humans , Particulate Matter/analysis , SARS-CoV-2 , Seasons
7.
Front Med ; 14(6): 752-759, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1064591

ABSTRACT

This study aimed to evaluate the efficacy of Chinese herbal medicine (CHM) in patients with severe/critical coronavirus disease 2019 (COVID-19). In this retrospective study, data were collected from 662 patients with severe/critical COVID-19 who were admitted to a designated hospital to treat patients with severe COVID-19 in Wuhan before March 20, 2020. All patients were divided into an exposed group (CHM users) and a control group (non-users). After propensity score matching in a 1:1 ratio, 156 CHM users were matched by propensity score to 156 non-users. No significant differences in seven baseline clinical variables were found between the two groups of patients. All-cause mortality was reported in 13 CHM users who died and 36 non-users who died. After multivariate adjustment, the mortality risk of CHM users was reduced by 82.2% (odds ratio 0.178, 95% CI 0.076-0.418; P < 0.001) compared with the non-users. Secondly, age (odds ratio 1.053, 95% CI 1.023-1.084; P < 0.001) and the proportion of severe/critical patients (odds ratio 0.063, 95% CI 0.028-0.143; P < 0.001) were the risk factors of mortality. These results show that the use of CHM may reduce the mortality of patients with severe/critical COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/mortality , COVID-19/therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Age Factors , Aged , China , Female , Humans , Male , Middle Aged , Odds Ratio , Propensity Score , Retrospective Studies , Survival Rate
8.
JMIR Med Inform ; 8(9): e19588, 2020 Sep 08.
Article in English | MEDLINE | ID: covidwho-993019

ABSTRACT

BACKGROUND: In late December 2019, a pneumonia caused by SARS-CoV-2 was first reported in Wuhan and spread worldwide rapidly. Currently, no specific medicine is available to treat infection with COVID-19. OBJECTIVE: The aims of this study were to summarize the epidemiological and clinical characteristics of 175 patients with SARS-CoV-2 infection who were hospitalized in Renmin Hospital of Wuhan University from January 1 to January 31, 2020, and to establish a tool to identify potential critical patients with COVID-19 and help clinical physicians prevent progression of this disease. METHODS: In this retrospective study, clinical characteristics of 175 confirmed COVID-19 cases were collected and analyzed. Univariate analysis and least absolute shrinkage and selection operator (LASSO) regression were used to select variables. Multivariate analysis was applied to identify independent risk factors in COVID-19 progression. We established a nomogram to evaluate the probability of progression of the condition of a patient with COVID-19 to severe within three weeks of disease onset. The nomogram was verified using calibration curves and receiver operating characteristic curves. RESULTS: A total of 18 variables were considered to be risk factors after the univariate regression analysis of the laboratory parameters (P<.05), and LASSO regression analysis screened out 10 risk factors for further study. The six independent risk factors revealed by multivariate Cox regression were age (OR 1.035, 95% CI 1.017-1.054; P<.001), CK level (OR 1.002, 95% CI 1.0003-1.0039; P=.02), CD4 count (OR 0.995, 95% CI 0.992-0.998; P=.002), CD8 % (OR 1.007, 95% CI 1.004-1.012, P<.001), CD8 count (OR 0.881, 95% CI 0.835-0.931; P<.001), and C3 count (OR 6.93, 95% CI 1.945-24.691; P=.003). The areas under the curve of the prediction model for 0.5-week, 1-week, 2-week and 3-week nonsevere probability were 0.721, 0.742, 0.87, and 0.832, respectively. The calibration curves showed that the model had good prediction ability within three weeks of disease onset. CONCLUSIONS: This study presents a predictive nomogram of critical patients with COVID-19 based on LASSO and Cox regression analysis. Clinical use of the nomogram may enable timely detection of potential critical patients with COVID-19 and instruct clinicians to administer early intervention to these patients to prevent the disease from worsening.

9.
J Integr Med ; 19(2): 185-190, 2021 03.
Article in English | MEDLINE | ID: covidwho-957237

ABSTRACT

After one-month of oral treatment with traditional Chinese medicine decoction, without using other drugs, the lung inflammatory exudate, pulmonary fibrosis and quality of life of a 61-year-old female patient with corona virus disease 2019 (COVID-19) were significantly improved. No recurrence or deterioration of the patient's condition was found within seven weeks of treatment and follow-up, and no adverse events occurred, indicating that oral Chinese medicine decoction was able to improve the pulmonary inflammation and fibrosis in a patient recovering from COVID-19, but further research is still needed.


Subject(s)
COVID-19/complications , Drugs, Chinese Herbal/therapeutic use , Lung/drug effects , Medicine, Chinese Traditional , Phytotherapy , Pulmonary Fibrosis/drug therapy , Administration, Oral , COVID-19/virology , Exudates and Transudates , Female , Humans , Inflammation/drug therapy , Inflammation/etiology , Lung/pathology , Magnoliopsida , Middle Aged , Pulmonary Fibrosis/etiology , SARS-CoV-2
10.
Aging (Albany NY) ; 12(20): 19898-19910, 2020 10 26.
Article in English | MEDLINE | ID: covidwho-892548

ABSTRACT

The number of corona virus disease 2019 cases is increasing rapidly. However, the comparison of clinical characteristics between patients ≥ 70 and those < 70 has not been implemented yet. To achieve that, we collected clinical data of consecutive 222 patients in Renmin Hospital of Wuhan University diagnosed between January 13, 2020 and February 4, 2020. We divided them into an under-70 group and an over-70 group according to their ages, comparing their clinical characteristics. Meanwhile, univariate and multivariate Cox regression analyses were performed to identify the prognostic factors. Among the patients enrolled, 37 (16.67%) were 70 or older and 185 (83.33%) were younger than 70. Higher proportions of dyspnoea, expectoration, chronic cardiovascular disease, diabetes, organ complications, severe-to-critical cases, a higher death rate, a longer hospital stay and decreased immune status were observed in the over-70 group patients compared with their younger counterparts. The risk factors for death included dyspnoea, muscle ache, elevated myocardial enzymes, elevated C3 in over-70 patients and dyspnoea, pharyngalgia, chronic cardiac disease, increased C-reactive protein, IgA, decreased platelets in under-70 patients. Overall, our research compared the clinical characteristics of the two populations with different immune status and illustrated differentiated risk factors for death in them.


Subject(s)
Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19 , China/epidemiology , Coronavirus Infections/blood , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Prognosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL